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Abstract-The transient response for diffraction of an incident horizontally polarized shear wave
by a finite crack in an unbounded elastic solid is investigated in this study. In analyzing this problem,
an infinite number of diffracted waves generated by two crack tips must be taken into account that
will make the analysis extremely difficult. An alternative methodology different from tite con
ventional superposition method is used to construct the reflected and diffracted fields. The complete
solutions are determined by superposition of proposed fundamental solutions in the Laplace trans
form domain. The fundamental solutions to be used are the problems for applying exponentially
distributed (in the Laplace transform domain) traction and screw dislocation on the crack faces and
along the crack tip line, respectively. The exact transient closed form solutions of dynamic stress
intensity factor for two crack tips are obtained and expressed in very simple and compact formu
lations. Each term in the formulations has its own physical meaning. The solutions are valid for an
infinite length of time and have accounted for the contributions of an infinite number of diffracted
waves. Numerical results of both tips for different incident angles are evaluated which indicate that
the dynamic stress intensity factors will oscillate near the correspondent static values after the first
three waves have passed the specified crack tip. Some discrepancies of the numerical results compared
with available solutions are discussed in detail. © 1997, Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Recently, the transient response of a solid medium containing a crack-like flaw under
dynamic loads has received much attention. Scattering of elastic waves by cracks has
attracted attention over the years for its importance towards the nondestructive evaluation
ofmaterials and the dynamic fracture analysis ofmaterials. The interaction of a stress wave
with a crack is a complicated problem and the analysis is mainly restricted to relatively
simple problems. Most of the work, however, has been directed towards the solution of
problems with a semi-infinite crack subjected to symmetry distributed impact loading on
crack faces. The complete solutions mentioned above can be obtained by integral transform
methods in conjunction with direct application of the Wiener-Hopf technique (Noble,
1958) and the Cagniard-de Hoop method (de Hoop, 1958) of Laplace inversion. If the
cracked problem has a characteristic length or the loading condition is unsymmetrical, then
the usual procedure using integral transform methods does not apply.

The stress intensity factors at the edges of a finite crack upon diffraction of a time
harmonic wave have been obtained by Loeber and Sih (1968) and Sih and Loeber (1968;
1969). If integral transforms are applied to solve the transient response of a finite crack
subjected to dynamic loading, a relationship among sectionally analytic functions will be
obtained which is more complicated than the form of the standard Wiener-Hopfequations.
The generalized Wiener-Hopf equation can be solved iteratively to obtain the complete
transient solution, and only the first step in the iteration process has been carried out. Thau
and Lu (1971), following the work of Kostrov (1964) and Flitman (1963), treated the
analogous transient problem of diffraction of an arbitrary plane dilatational wave by a
finite crack and a finite rigid ribbon in an infinite elastic solid from the iteration process.
Their results are exact only at the time interval that the dilatational wave has travelled the
length of the crack twice. Sih and Embley (1972) have studied the near field solution of a
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finite crack under transient in-plane loading. They reduced the mixed boundary value
problem to a standard Fredholm integral equation and subsequently inverted the Laplace
transform ofthe stress components by a combination ofnumerical means and an application
of the Cagniard inversion technique. A class of problems involving interaction between a
finite crack and other boundaries was considered by Chen (1977; 1978) and Itou (1980;
1981). With the exception of Loeber and Sih who considered the time-harmonic incident
wave, all of the authors mentioned above have simplified their problems by assuming the
symmetry distributed loading conditions, and finally used a numerical Laplace inversion
technique to obtain the solutions in the physical domain. Because of the mathematical
difficulties, the close form analytical solution for the problem of a finite crack subjected to
transient waves is very rare.

The problem of an unbounded medium containing a semi-infinite crack subjected to a
pair of concentrated loadings on the faces of the crack has been investigated by Freund
(1974). A straightforward application of the Wiener-Hopf method is not successful and
the transient solution was obtained by Freund (1974) by an indirect approach based on the
superposition ofmoving dislocations. He proposed a fundamental solution arising from an
edge dislocation climbing along the line ahead of the crack tip with a constant speed to
overcome these difficulties of the case with a characteristic length. The solution can be
constructed by taking an integration over a climbing dislocation of different moving
velocity. Basing his procedure on this method, Brock (1982; 1984), Brock et al. (1985), and
Ma and Hou (1990; 1991) have analyzed a series of problems of a semi-infinite crack
subjected to impact loading on crack faces. A thorough summary of the application of the
main direct methods of analysis for transient problems in dynamic fracture for elastic or
inelastic problems has been given by Freund (1990). Freund (1990) has suggested an
alternate approach based on the aforementioned moving dislocation solution to examine
the same finite-crack problem that had been solved by Thau and Lu (1971). In practice,
however, the alternate approach provided a solution that is valid for the same time range
as before.

Kostrov (1966) and Achenbach (1970a; 1970b) have used the method based on Green's
function to solve the problems of crack propagation for anti-plane deformation. In their
studies, the region of integration for the integral equation is in a complicated shape,
generally being bounded by a hyperbola and a number of straight lines. For points ahead
of the crack tip, the region of integration reduces to a triangular region and the stress in
the plane of the crack can thus be determined without difficulty. However, for material
points not on the crack tip line, the region of integration is very complicated and careful
analysis is needed. Scattering of plane harmonic waves by a running crack of finite length
was investigated by Chen and Sih (1975). They found the dynamic stress intensity factors
and crack opening displacements of the finite crack. Exact transient closed form solutions
for a stationary semi-infinite crack subjected to a suddenly applied dynamic body force in
an unbounded medium have been obtained by Tsai and Ma (1992) for the inplane case and
by Ma and Chen (1993) for the anti-plane case. They determined the transient full field
solutions by superimposing a fundamental solution in the Laplace transform domain. The
fundamental solution used in the problem is an exponentially distributed traction in the
Laplace transform domain on the crack faces. This fundamental solution has also suc
cessfully been applied to solve the problems of a half plane containing a semi-infinite
inclined crack by Tsai and Ma (1993), and Ma and Chen (1994) for inplane and anti-plane
problems, respectively.

In this study, a situation in which the configuration of a solid body itself possesses a
characteristic length is investigated. We consider the transient response ofa stationary finite
crack subjected to an incident plane horizontally polarized shear wave as shown in Fig. 1.
In analyzing this problem, the waves diffracted by two crack tips will generate an infinite
number of waves and make the analysis extremely difficult. It is impossible to solve this
complicated problem by direct application of the standard Wiener-Hopf technique, so
another approach must be followed. Two useful fundamental problems are proposed to
overcome these difficulties. The proposed fundamental problems, which form a key element
in the analysis, are solved exactly by the Wiener-Hopf method. The compact and explicit



Finite crack subjected to a polarized shear wave

~x
Xl B A

Fig. 1. Configuration and coordinate systems of a finite crack in an unbounded medium.
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close form solutions are extracted by means of superposition argument and every term
expressed in the solutions has its own physical meaning. Since the stress intensity factor is
the key parameter in characterizing dynamic crack growth, we will focus our attention
mainly on the determination ofthe dynamic stress intensity factor. It has been shown from
the literature that the dynamic stress intensity factors for plane stress wave diffraction by a
crack may be larger than the corresponding static values. This phenomenon, known as
dynamic overshoot, is an important subject in the dynamic fracture analysis. In this study,
we have found that the dynamic stress intensity factor generated at a finite stationary crack
by a plane polarized step pulse with arbitrary incident angle, decreases from its maximum
value upon arrival of secondary diffractions and oscillates about the corresponding static
values. These results, however, are different from those obtained by Brock (1975) in
analyzing the similar problem. The advantages of our treatment over Brock will become
clear in the following section of mathematical analysis. These are: (1) the analysis is
relatively simple and straightforward, and (2) more importantly, our treatment is easier to
obtain the scattering field that is not on the crack tip line.

2. PROPOSED FUNDAMENTAL PROBLEMS AND FUNDAMENTAL SOLUTIONS

Two alternative fundamental problems are proposed in this section and the associated
fundamental solutions will be used to solve the problem of a finite crack subjected to plane
polarized shear waves. The solutions of an exponentially distributed traction applied at the
crack faces and exponentially distributed screw dislocations along the crack tip line in the
Laplace transform domain will be referred to as the fundamental solutions. The diffracted
waves generated from the crack tips can be constructed by superimposing the fundamental
solutions in the Laplace transform domain.

The governing equation for the anti-plane problem is represented by the two-dimen
sional wave equation

(1)

where w is the out-of-plane displacement and b is the slowness of the shear wave given by

Here v is the shear wave speed, p. and p are the shear modulus and the mass density of the
material, respectively. The nonvanishing shear stresses are
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ow OW
Tyz = Jl oy' Txz = Jl ox' (2)

2.1. Fundamental solution ofdistributed loads on crack faces
Exponentially distributed tractions in the Laplace transform domain for anti-plane

deformation are applied on the upper and lower crack faces. Because the tractions are equal
but opposite on the two crack faces, the problem can be viewed as a half-plane problem
with the material occupying the region y ~ 0, subjected to the following mixed boundary
conditions in the Laplace transform domain

fyz(X, 0, s) = eS1lX for - 00 < x < 0,

W(x,O,s) = ° forO < x < 00.

(3)

(4)

The Laplace transform parameter s is taken as a positive number and YJ is a constant. The
overbar symbol is used for denoting the transform on time t. This fundamental problem
can be solved by the application of the standard integral transform method. Applying the
one-sided Laplace transform over time, the two-sided Laplace transform over x under
the restriction of Re(YJ) > Re(Il), finally the Wiener~Hopf technique is implemented. The
solutions of stresses and displacement in the Laplace transform domain, for the boundary
conditions (3) and (4), can be expressed as follows

(5)

(6)

(7)

where

To ensure Re(cx) ~ 0 everywhere in the Il-plane, branch cuts are introduced from b to
00, and -b to - 00. The corresponding result of the dynamic stress intensity factor
expressed in the Laplace transform domain is

(8)

2.2. Fundamental solution ofscrew dislocation distributed along the crack tip line
Consider a semi-infinite crack contained in an unbounded medium. A distributed

screw dislocation ahead of the crack tip line yields the following boundary conditions in
the Laplace transform domain

W(X,O,s) = eS1lX forO < x < 00,

fyz(X,O,S) = ° for -00 < x < 0.

(9)

(10)
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The particular problem posed can be solved by means of the Wiener-Hopf method. The
solutions of stresses and the displacement expressed in the Laplace transform domain are

_ _ _1_ r J1,S(b_1'/)1/2(b+).)1/2 e-s(oy-.u)

ryz(x,y,s) - 2niJr
1

(1'/-).) d)',

-I i p.S(b_1'/)1/2e -S(OY-.u)

i'xz(x,y,s) = -. d)',
2m r

1
(1'/-).)(b-).) 1/2

- - -=-!i (b_1'/)1/2e-s(oy-.u)

w(x,y,s) - 2 . d)..
m r

1
(1'/-).)(b-).)1/2

(II)

(12)

(13)

The corresponding result of stress intensity factor expressed in the Laplace transform
domain is

(14)

3. DYNAMIC STRESS INTENSITY FACTORS CAUSED BY A HORIZONTALLY
POLARIZED SHEAR WAVE

The idea of an elastic stress intensity factor is a well-established concept in fracture
mechanics, and it represents the cornerstone of applied linear elastic fracture mechanics.
We will focus our attentions in this study mainly on the evaluation of the dynamic stress
intensity factor.

A specific geometry to be consider here is an infinite medium containing a finite crack
oflength I as shown in Fig. l. The origins of two coordinate systems (x,y) and (x',y') are
located at crack tips A and B, respectively. The incident plane wave with an incident angle
y is represented by the general form

where

w'(x,y, t) = F(t+bxcosy-bysin y),

F(t) = H(t) Lf(r) dr,

(15)

(16)

in which F is identically zero when its argument is negative, but is otherwise an arbitrary
wave form. Thus, the medium ahead of the incident plane wave front is undisturbed. In
eqn (16), HO denotes the Heaviside step function and y is the angle of the negative x-axis
and the normal to the wavefront. The position of the wavefront for time t < 0 is also shown
in Fig. l. Here the angle y is restricted to the range 0 < y ~ n/2.

At time t = 0, the incident plane wavefront strikes the crack tip A and will generate
plane reflected and cylindrical diffracted waves. Some time later, i.e. t = blcos y, the incident
plane wave will arrive at the crack tip B and another diffracted wave will be induced. The
diffracted waves will scatter back and forth between the crack tips A and B at a later time.
In analyzing this problem, the diffractions of stress waves by two crack tips will generate
an infinite number of waves, and this must be taken into account.

An effective superposition scheme will be proposed in this study to solve this com
plicated problem. The incident horizontally polarized shear wave expressed in eqn (15) will
give rise to the following shear stress in the infinite medium:

r~z(x,y,t) = -p.bsinYf(t+bxcosy-bysiny)H(t+bxcosy-bysiny). (17)

The incident stress field (17) can be represented in the Laplace transform domain as
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.:i ( ) = _1_1ph sin y/(s) -s;'ylany+s.lx d'
"Lyz x,y,s 2' , b e A,

m r. A- cosy
(18)

or expressed in the (x', y') coordinate system as

-i (' , ) --1-1 Jlbsiny/(s) slytany+sl(x'+')d'ry,z'x,y,s -2' , b e A.
m r. A+ cosy

(19)

Having the same definition as in the previous section, the overbar symbol off is used for
denoting the Laplace transform at time t. Before the incident stress wave diffracted from
the crack tip B, the stress field is precisely the same as that derived for a semi-infinite crack
which lies in the plane y = 0 and - 00 < x < 0, and is struck by the same incident plane
wave. The incident stress field ~z(x, 0, s) at y = 0 generated by the horizontally polarized
shear wave is

i_I1ph sin yl s.lx
t'yz(x, 0, s) - -2' Abe dA.

m r. - cosy
(20)

The applied traction on the crack face, in order to eliminate the incident wave as indicated
in eqn (20), has the functional form eS.lx. Since the solutions ofapplying traction e""X on crack
faces have been solved in Section 2, the reflected and diffracted fields can be constructed by
superimposing the incident wave traction that is equal and opposite to eqn (20). When we
combine eqns (7) and (20), the solution of displacement wA1 for Al wave (the first wave
diffracted from the crack tip A) in the upper plane can be expressed in the Laplace transform
domain as follows

1 i j2b sin(y/2)le-S~Y+s.lx
=- dA

21£i r. SIL(A)(A-bcosy) .
(21)

The corresponding stress intensity factor expressed in the Laplace transform domain
is

KAI S =.=..!. r ph sin yJ { -.j2 LA
() 21£iJr.A-bcosy j:;OC+(A)J

_ - 2JbJl sin(y/2)1
- j:;

(22)

By using the Cagniard-de Hoop method of Laplace inversion, the dynamic stress intensity
factor at the crack tip A induced by the incident ~z wave expressed in time domain will be

~ . i' f(r)KA1(t) = -2 -Jlsm(y/2) ;:-:dr.
1£ oyt-r

(23)

Subsequently, the incident plane wave will propagate toward the crack tip B and will be
diffracted at t = blcosy. Following the similar procedure that is used for constructing the
Al wave, the Bl wave (the first wave diffracted from the crack tip B) can be constructed in
the coordinate system (x',y') by eqns (19) and (7) as follows
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(24)

The corresponding stress intensity factor at crack B induced by incident plane wave is

2J'bJl cos(y/2)!e-sblcOsy
f(!31(S) = Js

The dynamic stress intensity factor at the crack tip B expressed in time domain will be

l i'-b'COSY f(r:)
KB1(t) = 2 -Jlcos(y/2) dr:.

n 0 Jt-b/cosy-r:

As a specific example, if we consider an incident step-stress wave for which

r:o
f(t) = Jlb'

then the integrals in eqns (23) and (26) can easily be evaluated to yield

(t.
K~I(t) = -4r:oy;[,sm(y/2)H(t)

and

t-b/cosy
K~I(t) = 4r:o nb cos(y/2)H(t-b/cosy).

(25)

(26)

(27)

(28)

(29)

The results expressed in eqns (28) and (29) are well-known solutions of dynamic stress
intensity factor for the first two diffractions of a step-stress wave by a finite crack in an
unbounded medium. The analogous solutions have also been found by Achenbach (1970a).

After the first incident wave arrived at crack tip A, the second wave which passes A is
the one that is induced by the incident wave and arrives at the left tip B, generates the
diffracted Bl wave, and then propagates toward A. When the diffracted Bl wave arrives at
the right tip of the finite crack at time t = b/(l + cosy), it carries a discontinuous dis
placement in the z-direction which violates the boundary condition for x > O. In order to
satisfy the boundary condition where the displacement must be continuous for x > 0, a
distributed screw dislocation is required to close the opening displacement. The diffracted
A2 wave will be induced when theBI wave arrived atthecrack tip A at time t = b/(l + cosy).
To construct the A2 wave, we change the formulation for the Bl wave from (x',y') to (x,y)
coordinate system, then the displacement we must eliminate ahead of the right tip A is

-BI - -=.!.i J2b cos(y/2)!e-sblcosYeS1(x+l)
w (x, 0, s) - 2 . ( ')(' b ) dA.m r

l
srx_ -11. 11.- cosy

(30)

Again we treat the crack as a semi-infinite crack which lies along the line y = 0,
- 00 < x < O. The diffracted A2 wave can be obtained by superimposing the distributed
dislocation that is equal and opposite to eqn (30) ahead of the tip x > 0 in the Laplace
transform domain as follows



902 Yi-Shyong Ing and Chien-Ching Ma

(31)

Here eqn (13) has been used to construct the solution of the diffracted A2 wave.
Using eqns (30) and (14), the corresponding stress intensity factor at crack tip A

expressed in the Laplace transform domain will be

(32)

Inversion of the Laplace transform yields

2 IbJlcos(yj2) it-bICOSY f'-<-bICOSY f«(j)Jr+bl
~W=~u ~~

n3
/
2

bl 0 Jt-r-blcosy-(jJr-bl(r+blcosy)

(33)

Similarly, we use the same process that is used for constructing the A2 wave, the diffracted
B2 wave, which occurs after the diffracted Al wave arrives at crack tip B at t = bl, can be
obtained from eqns (21) and (13), and is expressed in the coordinate system of (x/,y') as
follows

(34)

The correspondent stress intensity factor induced by the Al wave at the crack tip B
can be expressed in the Laplace transform domain as follows

(35)

The inverse Laplace transform of eqn (35) is

KB2(t) = -2.JbJlsin(yj2) r' rt

-< f«(j)~ d(jdr. (36)
n3

/
2

Jbl Jo J t-r - (jJr -bl(r-blcosy)

Consider a step-stress incident wave, eqns (38) and (36) will become

and

K~2(t) = 4rocos(yj2) rt-bIC08Y Jt-r-blcosy~dr

.Jbn3
/
2

Jbl J r - bl(r + blcos y)
(37)
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(38)

The B2 wave, which is generated by diffracting the Al wave at the left tip of the crack, will
return to tip A at t = 2bi. After it arrives at tip A, the displacement boundary condition
for x > 0 will be violated again. As we did before, an appropriate sequence of screw
dislocations along x > 0 must be superimposed to close the opening displacement ahead of
the crack tip. Combine the results of eqns (14) and (34), the corresponding stress intensity
factor for tip A in the Laplace transform domain can be obtained as follows

(39)

where

Applying the inverse Laplace transform to eqn (39), the stress intensity factor in the
time domain is

where

- 2 !bit sin(y/2) II i<-bl f ' -< ji(l»K A3(t) = yu
1[5/2 2bl bl 0 J t -1:-l>

[
Jt.+bVt2+bi ] d~d dx u t l 1:,

Jt. -bi(tl -bicosy)(tl +t2)Jt2-bi 1=<
(40)

Similarly, the stress intensity factor at the crack tip B due to the influence of the A2 wave
at t = bi(2+ cosy) is

2 !bitcos(y/2) I'-bICOSY i<-bl f'-<-bICOSY f(l»K B3 (t) = _y~u=----~~

1[5/2 2bl bl 0 Jt-r-bicosy-l>

x [ Jt. +biJt2+bi ] dl>dt. dr.
Jt l -bi(t. +bicosy)(t. +t2)Jt2-bi 1=<

For the step-stress incident wave case, eqns (40) and (41) yield

and

41:0 cos(y/2) I'-blCOSY i<-bl
K~3(t) = Jb Jt-r-bicosy

b1[5/2 2bl bl

[
Jt[ +biJt2+bi ] d d

X t l 1:.
~(tl -bicosy)(t[ +t2)Jt2-bi 1=<

(41)

(42)

(43)
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For the time being, we have constructed in detail the first three waves which have
contributions to the stress intensity factor at crack tips A and B. The above mentioned
process can be continued indefinitely. Following a similar procedure, the complete solutions
for dynamic stress intensity factor at tips A and B that account for the contributions of
incident waves and all the diffracted waves induced from the two crack tips are finally
obtained explicitly. Our results at each crack tip are exact up to an infinite length of time.
The complete solutions can be simplified into very compact formulations as follows

where

00

KA(t) = L KAn(t),
n=l

00

KB(t) = L KBn(t),
n=1

J! . f' f(r)KA1(t) = -2 -J.Lsm(yj2) ,r:-:dr,
1/; 0 V t-r

(44)

(45)

J! f

'-bICOSY j(r)
KB1(t) = 2 -J.Lcos(yj2) dr,

1/; 0 jt-blcosy-r

2)bJ.Lcos(yj2) 1'-bICOS Y f,-r-bICOSY f(fJ)jr+bl
~OO= ~~

1/;3/2 bl 0 jt-r-blcosy-fJjr-bl(r+blcosy)

KB2(t) = - 2)bJ.L sin(yj2) (' ('-r j(fJ)~ dfJ dr
1C

3/2 Jbl Jo j t-r-fJjr -bl(r-blcos "I) ,

KAn(t) = ( -lt2)bJ.L
~1Cn-1

i,-qb/COSY la, 1 a2 1an~2 ft-r-qbICOSY [(1- q) sin(yj2) +qcos(yj2)]j(fJ)
x .. · ASIF

(n-I)bl bl bl bl 0 jt-r-qblcosy-(j

d(jdtn_2dtn_3···dt l dr, forn = 3,4,5,"',

KBn(t) = (-l)n-
1
2)bJ.L

~1Cn-1

i'-(l-q)bICOSY la, 1 a2 1 an- 2 ft-r-(I- q)bICOSY [(1- q) cos(yj2) +q sin(yj2)]j(fJ)
X ... BSIF

(n-l)bl bl bl bl 0 jt-r-(1-q)blcosy-(j

d(j dtn - 2dtn_3 ... dt l dr, for n = 3,4,5,' ",

and

al = r-(n-2)bl,

av = r-t l -t2- .. · -tv _ I -(n-v-l)bl, for v = 2,3,4,"'n-2,

t l +t2+t3+ ... +tn = t,

q = 0, when n = 3,5,7, ... ; q = I, when n = 4,6,8, ... ,

ASIF=

[
Jt:+bijt;+bt .. .Jtn - 1 +bl ]

Jt 1 -b/[t] + (-I)"blcosy](t1 +t2)(t2+t3) .. ·(tn-2 -tn_ I )Jt2 -blJt3-bl'" Jtn- l -bl ,=:
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BSIF=

[
Jt:+b!Jt:+b!···Jtn-l+bl ]

Jt 1 -bl[t l +(_I)n-I blcosy](t] +(2)(t2+ t3)·· ·(tn-2 +tn- I)Jt2-blJt3 -bl'" Jtn- 1 -bl t=;

If the incident wave is a step-stress wave [i.e.f = roj(jlb)], the solutions can be simplified
and yield

where

OCJ

Ks.A(t) = L K~(t),
n=1

OCJ

Ks,B(t) = L K~n(t),
n=1

t-blcosy
K~I(t) = 4ro nb cos(yj2)H(t-blcosy),

A2() _ 4ro cos(yj2) ft-hiCOSY Jt-r-blcosY~d
K s t - ~ r,

.jbn3/2 hi v'r-bl(r+blcosy)

B2( ) = -4ro sin(yj2) ft J'H~ d
K s t fi. ~ r,

v' bn3
/
2 hi v' r-bl(r-blcosy)

(46)

(47)

(-I)n4ro it-qhlCOSY fa, fa2 f an-2
K~n(t) = G _ ... [(I-q) sin(yj2)

v' nb1t" 1 (n - 1)hl hi hi hi

+qcos(yj2)]Jt-r-qblcosyASIF dtn- 2 dtn_3 .. ·dt1 dr, forn = 3,4,5,"',

(_1)n-] 4ro i t-(I-q)hICOSY fa, fa2 f an-2
K~n(t) = G ... [(l-q)cos(yj2)

v' nb1t"- ] (n - 1)hl hi hi hi

+qsin(yj2)]Jt-r- (l-q)blcosy BSIF dtn- 2 dtn- 3 ... dt] dr, for n = 3,4,5," ..

The corresponding static limits of the stress intensity factor for a step-stress wave are

and

. Fd
K~.A = - ro sm yy"2

. Fd
K~,B = ro sm yy"2'

(48)

(49)

4. NUMERICAL RESULTS

In the previous section, the exact transient solutions ofdynamic stress intensity factors
for diffraction of a horizontally polarized shear wave by a finite crack have been derived.
The induced wave fronts of incident and diffracted waves in a short time period are shown
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Fig. 2. Wave fronts of the incident and diffracted waves for a short time period.
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Fig. 3. Transient response of the stress intensity factor normalized with the corresponding static
value at tip A for different values of y.

in Fig. 2. Numerical calculations have been done here for a step-stress wave case at both
tips of the finite crack, Figures 3 and 4 show the dimensionless stress intensity factors Ks.A/
K;,A and Ks,B/K;,B vs the dimensionless time tlbl for different values of the incident angle y
at tips A and B, respectively. The corresponding time of the diffracted waves arrival at the
tip is also indicated in the figures for the case y = 90°, It indicates in these figures that the
dynamic stress factors will increase with time and will reach a maximum overshot at the



Finite crack subjected to a polarized shear wave 907

1.4 --..-----------------------,

t
d5

1.0 -f~~____,I__f-I-II

1.2

GO ~ 0.8
~GO Gee6€> 1= 15°

~ 0.6
I3f388EI 30°
6lslslst:> 4So

~ I I I " 60°
JI'."III'$ 90°

0.4
d2 B2 wave
d3 B3 wave
d4 B4 wave

0.2 dS BS wave

0.0 I I

0 2 .3 4 5

t/bl
Fig. 4. Transient response of the stress intensity factor normalized with the corresponding static

value at tip B for different values of y.

instance that the second wave arrives at the crack tip, which is greater than the cor
respondent static value, and then oscillate near the static value after the first three waves
have passed through the crack tip. Moreover, from eqns (28), (29), (48) and (49) we can
calculate that the ratio of the value for maximum dynamic overshot and the corresponding
static value will always be 4/n. This is a very important characteristic feature that must be
taken into account for the dynamic fracture analysis. Figures 5 and 6 show the dimensionless
stress intensity factors Ks•A/ I /2/-rO and Ks•B/ I /2/-rO vs the dimensionless time t/bl for different
values of the incident angle y at tips A and B, respectively. It can be seen that as the angle
y increases, the peak magnitude increases and it will approach a larger static value. It is
worthy to note that the stress intensity factors at crack tip B for a small incident angle
increase very rapidly after the first wave arrives at the tip. The times that the maximum
values of the overshot occur are bl(l + cos y) and bl for crack tips A and B, respectively.
Substituting t = bl(l + cos y) and t = bl into eqns (28) and (29), respectively, we find that
the maximum value of stress intensity factors for tips A and B are equal and 1K:,',:,xl =
1K:Jf'1 = 2-ro(2l/n) 1/2 sin y. Because the time that the stress intensity factor of crack tip B
reaches its maximum value is shorter than that of tip A, the finite crack will propagate first
from tip B for large dynamic fracture toughness. Only for the special case ofnormal incident
(y = 90°) will the two crack tips propagate at the same time.

Brock (1975) also investigated the same problem for the long time behavior. His results
indicated that the peak dynamic stress intensity factors could occur after the arrival of the
second wave (d2 wave), which means that secondary diffractions may produce even higher
peaks than the earlier peaking. Numerical results in fig. 8 of Brock (1975) show that higher
peaks may be caused by secondary diffraction for small incident angles (y < 45°). However,
our present results indicate that the maximum dynamic stress intensity factor in the transient
period always occurs at the instance that the second wave arrives at crack tip A or B.
Hence, fracture of a crack occurs before the arrival or secondary diffractions and the
fracture initiation may be examined by short time analysis of a semi-infinite crack.
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5. CONCLUSIONS

Most of the problems that have been studied in the development of fracture mechanics
are quasi-static. Numerous problems have existed for which the assumption that the defor
mation is quasi-static is invalid and the inertia of the material must be taken into account.
Because of the difficulties in mathematical complexity, analytical solutions for an elastic
solid containing a finite crack subjected to dynamic loading are very rare. In conventional
studies ofa semi-infinite crack in an unbounded medium su1:>jected to dynamic loading, the
complete solution can be obtained by applying direct integral transform methods. If a
dynamic cracked problem having a characteristic length or the loading condition is unsym
metric, then the same procedure cannot be applied directly. In this investigation, we propose
a powerful superposition methodology, which is ,performed in the Laplace transform
domain, and successfully applied to solve the transient response of a finite crack contained
in an unbounded medium. The finite crack is struck by a horizontally polarized shear wave
of arbitrary shape. Two useful fundamental solutions are proposed to solve this problem.
The complete closed form solutions for transient stress intensity factor of both crack tips
are obtained and expressed in very simple and compact formulations. Every term expressed
in the solution has its own physical meaning. The solutions are valid for an infinite length
of time and have accounted for the contributions coming from all diffracted waves which
propagate back and forth between the two tips.

For the numerical calculation of the transient stress intensity factor, a step-stress
incident wave is investigated in detail. It is shown in the numerical results that the dynamic
stress intensity factors increase with time at first and will reach a maximum dynamic
overshot at the instance that the second wave arrives at the tip, and then oscillate near the
static value after the first three waves have passed through the crack tip. It is also concluded
in this investigation that the transient effect for the stress intensity factor can be neglected
after the first three diffracted waves have passed the crack tip. The ratio of the value for
the maximum dynamic overshot and the corresponding static value is always 4/1t for both
tips and for various incident angles. It is also pointed out that fracture tends to occur as
the incident angle becomes larger and will onset possibly first at the left crack tip B. The
results obtained in this investigation provide much information that is very important for
the study on dynamic fracture. The powerful technique used in this paper can be provided
for further investigation in more complicated dynamic fracture problems especially on the
crack propagation event. Moreover, it is easy to extend the method proposed here to solve
more difficult problems which involve interaction of a finite crack with boundaries. A
further study related to dynamic fracture based on this method will be given in a follow-up
report.
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